Part 4: The Controller Code (Python)

Part 4: The Controller Code (Python)

The Brain. The actual Python code that runs the feedback loop.

import numpy as np
from safetymonitor import SafetyMonitor

class NanoController:
    """
    A controller class for the NanoCERN healing instrument.

    It takes in raw sensor data, calculates the healing state vector SH,
    decides on the best control action to minimize the potential V,
    and maps abstract controls to concrete hardware commands.
    """

    def _init__(self):
        # Define the parameters of the potential V
        self.kscar = 1.0  # Scar well depth
        self.kregen = 1.0  # Regen well depth
        self.psibarrier = 1.0  # Activation energy barrier

        # State Memory for Hysteresis
        self.boosting = False

        # Safety Monitor
        self.safety = SafetyMonitor()

        # Define the sensor and actuator mappings
        self.sensormap = {
            'membranepotential': 0,
            'conductivity': 1,
            'chemicalgradient': 2,
            'stiffness': 3,
            'thermalnoise': 4,
            'permittivity': 5,
            'ioniccurrent': 6,
            'boundarycontinuity': 7,
            'entropyproduction': 8,
            'mechanicaltension': 9
        }

        self.actuatormap = {
            'helmholtzcoil': 0,
            'electrodes': 1,
            'piezoelectricstretchers': 2
        }

    def step(self, sensordata):
        """
        Takes in raw sensor readings and returns control signals.

        Parameters:
        sensordata (list): A list of raw sensor readings.

        Returns:
        controlsignals (list): A list of control signals for the actuators.
        """
        # Calculate the healing state vector SH
        SH = self.calculateSH(sensordata)

        # Calculate the potential V
        V = self.calculatepotential(SH)

        # Decide on the best control action
        action = self.decideaction(SH)

        # Map abstract controls to concrete hardware commands
        controlsignals = self.mapactiontocontrol(action)

        return controlsignals

    def calculateSH(self, sensordata):
        """
        Calculates the healing state vector SH from raw sensor readings.

        Parameters:
        sensordata (list): A list of raw sensor readings.

        Returns:
        SH (list): The healing state vector.
        """
        SH = [0.0] * 10  # Initialize SH with zeros

        # Map sensor readings to SH components
        for i, component in enumerate(self.sensormap.keys()):
            SH[i] = sensordata[self.sensormap[component]]

        return SH

    def calculatepotential(self, SH):
        """
        Calculates the potential V based on the Attractor Model.

        Parameters:
        SH (list): The healing state vector.

        Returns:
        V (float): The potential V.
        """
        # Calculate the scar and regen well energies
        Escar = self.kscar * (SH[0] - 1.0)**2
        Eregen = self.kregen * (SH[0] - 2.0)**2

        # Calculate the activation energy barrier
        psi = self.psibarrier * np.exp(-(SH[1] - 1.0)**2)

        # Calculate the total potential V
        V = Escar + Eregen + psi

        return V

    def decideaction(self, SH):
        """
        Decides on the best control action to minimize the potential V.
        Uses Hysteresis to prevent premature relaxation.

        Parameters:
        SH (list): The healing state vector.

        Returns:
        action (str): The best control action.
        """
        # Hysteresis Logic
        # Trigger Point: < 1.5 (Enter Scar Zone)
        # Release Point: > 1.8 (Deep in Regen Zone)

        phim = SH[0]

        if phim < 1.5:
            self.boosting = True
        elif phim > 1.8:
            self.boosting = False

        # Decide on the best control action
        if self.boosting:
            action = 'increasecoherence'
        else:
            action = 'maintaincoherence'

        return action

    def mapactiontocontrol(self, action):
        """
        Maps abstract controls to concrete hardware commands.

        Parameters:
        action (str): The abstract control action.

        Returns:
        controlsignals (list): The concrete hardware commands.
        """
        controlsignals = [0.0] * 3  # Initialize control signals with zeros

        # Map abstract controls to concrete hardware commands
        if action == 'increasecoherence':
            controlsignals[self.actuatormap['helmholtzcoil']] = 150.0  # Set Helmholtz coil to 150Hz
        elif action == 'maintaincoherence':
            controlsignals[self.actuatormap['helmholtzcoil']] = 100.0  # Set Helmholtz coil to 100Hz

        return controlsignals

# Example usage:
controller = NanoController()
sensordata = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
controlsignals = controller.step(sensordata)
print(controlsignals)

Leave a Comment